Analysis of fully discrete FEM for miscible displacement in porous media with Bear–Scheidegger diffusion tensor
主 讲 人 :蔡文涛 副教授
活动时间:06月01日16时00分
地 点 :理科群1号楼C-105室
讲座内容:
In this talk,we study the fully discrete finite element methods for the porous media flow with weak regularity coefficient. Previous works on optimal-order L^{\infty}(L^2)-norm error estimate required the strong regularity assumption, while the Bear–Scheidegger diffusion–dispersion tensor is only Lipschitz continuous even for a sufficiently smooth velocity field u. In this work, by maximal L^p-regularity of fully discrete finite element solutions of parabolic equation, optimal error estimate in L^p (L^q) -norm and almost optimal error estimate in L{\infty} (L^q )-norm are established under the assumption of coefficient being Lipschitz continuous.
主讲人介绍:
蔡文涛,杭州电子科技大学副教授,硕士生导师,2018年博士毕业于西安交通大学,2021-2023年在北京计算科学研究中心做博士后研究工作。主要研究方向为偏微分方程数值解及其误差分析。主持和参与国家自然基金、省基金多项。在计算数学杂志,如:SIAM J. Numer. Anal., Numer. Math, ESIAM-M2AN等期刊发表一系列学术论文。