学术活动

当前位置:首页>>学术交流>>学术活动

Adaptive reweighted quaternion sparse learning for data recovery and classification

主 讲 人 :高洁欣    副教授

活动时间:06月01日10时30分    

地      点 :理科群1号楼D203

讲座内容:

Sparse representation (SR) methods in quaternion space have been attracting increasing interests recently. However, most existing quaternion SR methods adopt the quaternion 1 norm, which penalizes all the entries of the quaternion sparse vector equally and ignores the differences and significance of different entries. Ideally, the entries with large magnitude should be less penalized while those with small magnitude (such as zero entries) should be more penalized. Therefore, we propose an Adaptive Weighted Quaternion Sparse Representation (AWQSR) method in this work, which can learn weights for distinct entries of the quaternion sparse entries in an adaptive manner. Due to the noncommutativity of quaternion multiplication, it is difficult to tackle the resulting optimization problem of AWQSR. For this reason, we devise an effective iteratively reweighted optimization algorithm based on quaternion operators. To further improve the classification performance, we also develop a Supervised AWQSR based Classification (SAWQSRC) method by leveraging the label information of training samples to learn discriminative weights. Theoretical analysis of SAWQSRC has also been established to show that SAWQSRC succeeds in classification under appropriate conditions. The experiments on simulated data and real data prove the validity of the proposed methods for quaternion signal recovery and classification.

主讲人介绍:

高洁欣, 澳门大学(中国)科技学院 (FST)数学系副教授, 博士生导师, 澳门大学数学博士。一直致力研究高维数据分析理论及应用20余年, 主要研究Clifford分析、 四元数分析、 傅立叶分析及张量对高维数据处理的影响和作用。主持或主研参与国家及地区课题近18项,包括澳门科技发展基金、澳门大学研究基金、中国国家自然科学基金、广东省科学技术局与澳门合作的研究项目, 发表论文100余篇。2018年度澳门科学技术奖(自然科学奖) 三等奖,  2017 澳门大学FST卓越奖。 现为英国剑桥大学Clare Hall终身会员、应用数学研究中心成员,澳门核医学分子影像学会外务理事。(http://www.fst.umac.mo/en/staff/fstkik.html)