Minkowski Valuation and Function-valued Valuations
主 讲 人 :李晋 副教授
活动时间:06月05日15时40分
地 点 :理科群1号楼D204室
讲座内容:
Let $\mathcal{S}$ be a class of subsets of $\mathbb{R}^n$ and $\langle \mathcal{A,+} \rangle$ be an Abelian semigroup.A mapping $Z:\mathcal{S} \to \langle \mathcal{A,+} \rangle$ is called a \emph{valuation} provided\begin{equation*}Z K+Z L=Z(K\cup L)+Z(K \cap L),\end{equation*}for all $K,L\in \mathcal{S}$ with $K\cup L,K\cap L \in \mathcal{S}$.
The role of valuations is pivotal in addressing Hilbert's third problem, as the comprehensive resolution of this problem is equivalent to the classifications of real-valued valuations.
In this talk, I will show some recent studies on Minkowski valuation and function-valued valuations encompassing important geometric operators such as the projection body, moment body, the Legendre ellipsoid, and the Laplace transform.
主讲人介绍:
李晋,上海大学副教授,上海大学博士毕业,维也纳工大博后。入选上海市高层次青年人才计划、奥地利Lise Meitner博士后计划(2019-2021)。获维也纳工大数学教职工最佳论文奖(2017年度)。在国际著名期刊Adv. Math.、Trans. Amer. Math. Soc.、J. Funct. Anal.、Int. Math. Res. Not.、Indiana Univ. Math. J.等发表多篇学术论文。